Using Mutual Proximity to Improve Content-Based Audio Similarity

نویسندگان

  • Dominik Schnitzer
  • Arthur Flexer
  • Markus Schedl
  • Gerhard Widmer
چکیده

This work introduces Mutual Proximity, an unsupervised method which transforms arbitrary distances to similarities computed from the shared neighborhood of two data points. This reinterpretation aims to correct inconsistencies in the original distance space, like the hub phenomenon. Hubs are objects which appear unwontedly often as nearest neighbors in predominantly high-dimensional spaces. We apply Mutual Proximity to a widely used and standard content-based audio similarity algorithm. The algorithm is known to be negatively affected by the high number of hubs it produces. We show that without a modification of the audio similarity features or inclusion of additional knowledge about the datasets, applying Mutual Proximity leads to a significant increase of retrieval quality: (1) hubs decrease and (2) the k-nearest-neighbor classification rates increase significantly. The results of this paper show that taking the mutual neighborhood of objects into account is an important aspect which should be considered for this class of content-based audio similarity algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A MIREX Meta-analysis of Hubness in Audio Music Similarity

We use results from the 2011 MIREX “Audio Music Similarity and Retrieval” task for a meta analysis of the hub phenomenon. Hub songs appear similar to an undesirably high number of other songs due to a problem of measuring distances in high dimensional spaces. Comparing 17 algorithms we are able to confirm that different algorithms produce very different degrees of hubness. We also show that hub...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

Providing a Link Prediction Model based on Structural and Homophily Similarity in Social Networks

In recent years, with the growing number of online social networks, these networks have become one of the best markets for advertising and commerce, so studying these networks is very important. Most online social networks are growing and changing with new communications (new edges). Forecasting new edges in online social networks can give us a better understanding of the growth of these networ...

متن کامل

Content-Based Music Recommender Systems: Beyond simple Frame-Level Audio Similarity Dissertation zur Erlangung des akademischen Grades

This thesis aims at improving content-based music recommender systems. Besides a general introduction to music recommendation and an in-depth discussion of evaluation methods of content-based music recommender systems, improvements on two different abstraction levels are considered in this thesis: The first and most obvious way to improve a content-based music recommender system is to improve t...

متن کامل

A Novel Subsampling Method for 3D Multimodality Medical Image Registration Based on Mutual Information

Mutual information (MI) is a widely used similarity metric for multimodality image registration. However, it involves an extremely high computational time especially when it is applied to volume images. Moreover, its robustness is affected by existence of local maxima. The multi-resolution pyramid approaches have been proposed to speed up the registration process and increase the accuracy of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011